Cloning and characterization of Rrp1, the gene encoding Drosophila strand transferase: carboxy-terminal homology to DNA repair endo/exonucleases.

نویسندگان

  • M Sander
  • K Lowenhaupt
  • W S Lane
  • A Rich
چکیده

We previously reported the purification of a protein from Drosophila embryo extracts that carries out the strand transfer step in homologous recombination (Lowenhaupt, K., Sander, M., Hauser, C. and A. Rich, 1989, J. Biol. Chem. 264, 20568). We report here the isolation of the gene encoding this protein. Partial amino acid sequence from a tryptic digest of gel purified strand transfer protein was used to design a pair of degenerate oligonucleotide primers which amplified a 635 bp region of Drosophila genomic DNA. Recombinant bacteriophage were isolated from genomic and embryo cDNA libraries by screening with the amplified DNA fragment. These bacteriophage clones identify a single copy gene that expresses a single mRNA transcript in early embryos and in embryo-derived tissue culture cells. The cDNA nucleotide sequence contains an open reading frame of 679 amino acids within which are found 5 tryptic peptides from the strand transfer protein. Expression of this cDNA in E. coli produces a polypeptide with the same electrophoretic mobility as the purified protein. The deduced protein sequence has two distinct regions. The first 427 residues are basic, rich in glutamic acid and lysine residues and unrelated to known proteins. The carboxy-terminal 252 residues are average in amino acid composition and are homologous to the DNA repair proteins, Escherichia coli exonuclease III and Streptococcus pneumoniae exonuclease A. This protein, which we name Rrp1 (Recombination Repair Protein 1), may facilitate recombinational repair of DNA damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Drosophila Rrp1 domain structure as defined by limited proteolysis and biophysical analyses.

Drosophila Rrp1 is a DNA repair nuclease whose C-terminal region shares extensive homology with Escherichia coli exonuclease III, has nuclease activity, and provides resistance to oxidative and alkylating agents in repair-deficient E. coli strains. The N-terminal 421 amino acid region of Rrp1, which binds and renatures homologous single-stranded DNA, does not share homology with any known prote...

متن کامل

Molecular Characterization of the Human Excision Repair Gene ERCC-7: cDNA Cloning and Amino Acid Homology w ith the Yeast DNA Repair Gene RADIO

The human excision repair gene ERCC-7 was cloned after DNA mediated gene transfer to the CHO mutant 43-38, which is sensitive to ultraviolet light and mitomycin-C. We describe the cloning and sequence analysis of the ERCC-7 cDNA and partial characterization of the gene. ERCC.1 has a size of 15 kb and is located on human chromosome 19. The ERCC.1 precursor RNA is subject to alternative splicing ...

متن کامل

Molecular cloning of Drosophila mus308, a gene involved in DNA cross-link repair with homology to prokaryotic DNA polymerase I genes.

Mutations in the Drosophila mus308 gene confer specific hypersensitivity to DNA-cross-linking agents as a consequence of defects in DNA repair. The mus308 gene is shown here to encode a 229-kDa protein in which the amino-terminal domain contains the seven conserved motifs characteristic of DNA and RNA helicases and the carboxy-terminal domain shares over 55% sequence similarity with the polymer...

متن کامل

Cloning and Characterization of cbhII Gene fromTrichoderma parceramosum and Its Expressionin Pichia pastoris

The genomic and cDNA clones encoding cellobiohydrolase II (CBHII) have been isolated and sequenced from a native Iranian isolate of Trichoderma parceramosum, a high cellulolytic enzymes producer isolate. This represents the first report of cbhII gene from this organism. Comparison of genomic and cDNA sequences indicates this gene contains three short introns and also an open reading frame codin...

متن کامل

A mammalian protein complex that repairs double-strand breaks and deletions by recombination.

We have purified a high molecular weight complex (RC-1) from calf thymus nuclei that catalyzes a recombinational repair of double-strand gaps and deletions in DNA by gene conversion as well as cross-over events leading to cointegrant products. These have been detected by polymerase chain reaction analysis using oligonucleotide primer pairs that detect joined sequences originally present on only...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 19 16  شماره 

صفحات  -

تاریخ انتشار 1991